算法设计课程期末考试笔记

本文最后更新于:2024年7月4日 凌晨

逆序对计算的分治算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# 逆序对计算的分治算法
def count_inversions_dc(A):
lenA = len(A)
if lenA <= 1:
return 0, A
middle = lenA // 2
leftA = A[:middle]
rightA = A[middle:]
countLA, leftA = count_inversions_dc(leftA)
countRA, rightA = count_inversions_dc(rightA)
countLRA, mergedA = mac(leftA, rightA)

return countLA + countRA + countLRA, mergedA

def mac(A, B):
i, j, count = 0, 0, 0
alist = []
lenA = len(A)
lenB = len(B)
while i < lenA and j < lenB:
if A[i] < B[j]:
alist.append(A[i])
i += 1
else:
count += lenA - i
alist.append(B[j])
j += 1
while i < lenA:
alist.append(A[i])
i += 1
while j < lenB:
alist.append(B[j])
j += 1
return count, alist

if __name__ == '__main__':
a = [2, 4, 1, 3, 5]
c, b = count_inversions_dc(a)
print(c, b)

硬币找零的贪心算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def gmc(amt):
coin = [1, 5, 10, 25, 100]
cl = []
sc = sorted(coin, reverse=True)
for cv in sc:
cc = int(amt / cv)
cl += [cv, ] * cc
amt -= cv * cc
if amt <= 0.0:
break
return cl


if __name__ == '__main__':
print(gmc(38))

连续子序列和最大值动态规划算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def zxlmax(alist):
table = [0] * (len(alist) + 1)
for i in range(1, len(alist) + 1):
table[i] = max(table[i - 1] + alist[i - 1], alist[i-1])
return table

def tbs(alist, table):
import numpy as np
select = []
max_sum = max(table)
ind_max = np.argmax(table)
while ind_max >= 1:
if table[ind_max] == alist[ind_max - 1] + table[ind_max - 1]:
select.append(alist[ind_max - 1])
ind_max -= 1
else:
select.append(alist[ind_max - 1])
break
return select

if __name__ == '__main__':
a = [2, 11, 4, 13, -5]
table = zxlmax(a)
s=tbs(a,table)
print(s, table)

矩阵连乘最优结合问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
gk = lambda i,j :str(i)+','+str(j)
def mmc(p):
n=len(p)-1
m={}
for i in range (1,n+1):
for j in range (i,n+1):
m[gk(i,j)]=float("inf")
return lc(m,p,1,n)


def lc(m,p,i,j):
if m[gk(i,j)]<float("inf"):
return m[gk(i,j)]
if i==j :
return 0
else:
for k in range(i,j):
q=lc(m,p,i,k)+lc(m,p,k+1,j)+p[i-1]*p[k]*p[j]
if q< m[gk(i,j)]:
m[gk(i,j)]=q
return m[gk(i,j)]

if __name__ == '__main__':
p=[30,35,15,5,10,20,25]
print(gk(1,2))
print(mmc(p))

二维0-1背包问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
def bb(W,wt,val,n):
K=[[0 for x in range(W+1)] for x in range (n+1)]

for i in range (n+1):
for w in range(W+1):
if i==0 or w==0:
K[i][w]=0
elif wt[i-1]<=w:
K[i][w]=max(val[i-1]+K[i-1][w-wt[i-1],K[i-1][w]])
else:
K[i][w]=K[i-1][w]
return K

def aa(w,wt,val,n):
if n==0 or w==0:
return 0
if wt[n-1]>w:
return aa(w,wt,val,n-1)
else:
return max(val[n-1]+aa(w-wt[n-1],wt,val,n-1),aa(w,wt,val,n-1))

间隔任务规划

1
2
3
4
5
6
7
8
9
10
11
12
def gmi(joblist):
js=[]
nj=len(joblist)
joblist.sort(key=lambda x: x[2])
for n in range(nj):
if not js:
js.append(joblist[n])
else:
if js[-1][2]<joblist[n][1]:
js.append(joblist[n])
return js

求最大岛屿问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
dx = [1, -1, 0, 0]
dy = [0, 0, -1, 1]
vis = [[0 for col in range(7)] for row in range(7)]
res = 0
ans = 0
graph = [[0, 0, 0, 0, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1], ]


def dfs(x, y):
flag = 0
global res
global ans
global graph
global dx
global dy
for i in range(0, 4):
tox = x + dx[i]
toy = y + dy[i]
if tox < 0 or tox > 6 or toy < 0 or toy > 6:
continue
if vis[tox][toy] == 0 and graph[tox][toy]:
vis[tox][toy] = 1
ans = ans + 1
dfs(tox, toy)
return


if __name__ == '__main__':
for i in range(0, 7):
for j in range(0, 7):
if graph[i][j] == 1:
vis[i][j] = 1
ans = 1
dfs(i, j)
res = max(res, ans)
print(res)

八皇后问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pdb
import random


def Place(k):
# 注意:k从索引0开始
for j in range(k):
if abs(k - j) == abs(rect[k] - rect[j]) or rect[k] == rect[j]:
return False
return True


def QueensLV(n): # 返回一个bool值,得到解返回True,否则False
k = 0 # 第一个索引为0
rect[k] = random.randint(0, n)
while (Place(k)):
if k == n - 1:
print('八皇后问题的一个解为:', rect)
return True
k += 1
rect[k] = random.randint(0, n)
return False


if __name__ == '__main__':
n = input('请输入皇后数量:')
n = int(n)
rect = [0 for i in range(n)]
print('输入的棋盘:', rect)
errorcount = 0 # 失败次数
while (not QueensLV(n)):
errorcount += 1
print('共尝试了{}次放置皇后的位置'.format(errorcount))


算法设计课程期末考试笔记
https://www.liahnu.top/2023/06/28/算法设计课程期末考试笔记/
作者
liahnu
发布于
2023年6月28日
许可协议